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Abstract
Isotropic covariance functions are routinely adopted in specifying mod-

els for point-referenced spatial data. Implicit in such modeling is the as-
sumption that spatial dependence is not directional. Geometric anisotropic
models offer a class of specifications which incorporate directional depen-
dence. They have received sparse attention in the literature because their
associated number of parameters increase and become difficult to identify
as we increase richness of the function. Adopting a Bayesian framework,
this paper attempts to illuminate when and how much such models for ran-
dom effects in geostatistical settings improve predictive performance. We
show that geometric anisotropy yields better predictive performance when
the data significantly departs from isotropy (anisotropy ratio is much greater
than one), and that the improvement is more prominent when spatial vari-
ance is greater than pure error. The improvement in predictive performance
is illustrated through simulation investigation as well as modeling data on
scallop catches. We implement full Bayesian inference for model parame-
ters using Markov chain Monte Carlo with a Metropolis-Hastings algorithm,
adding kriging using composition sampling.

1 Introduction
Researchers in diverse areas such as climatology, ecology and environmental health
are increasingly interested in analyzing data that are geographically referenced.
For example, epidemiologists may be interested in studying the number of lung
cancer incidents by county and state. Ecologists may be interested in the loca-
tion of a particular species of trees in a forest. Researchers are often interested in
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statistical inference tasks, such as modeling of trends and correlation structures,
estimation of underlying model parameters, hypothesis testing, model comparison
and selection, and prediction of observations at unobserved locations (kriging).

With the advancement of Markov chain Monte Carlo (MCMC) computing,
Bayesian modeling approaches have become increasingly common, as they enable
hierarchical model structures where prior belief is updated with new information,
as well as natural quantification of uncertainty through sampling schemes. The
Banerjee et al. (2014) text presents a thorough treatment of hierarchical Bayesian
approaches for a variety of complex spatial data problems.

One common type of spatial data is point-referenced data, often referred to as
geostatistical data, where we observe realizations of a spatial stochastic process
at a fixed set of locations. We are often interested in a geographical distribution
for the realizations that accounts for spatial correlation, typically in the presence
of spatially referenced covariates. The simplest choices for modeling spatial cor-
relation are isotropic covariance functions, where we assume spatial correlation
between locations depends only on the distance between locations. In cases where
this assumption does not hold, i.e., spatial correlation varies by direction, we can
consider anisotropic covariance functions which depend on the separation vector
between locations.

In the literature we find several notions of anisotropy, e.g., sill, nugget, and ge-
ometric anisotropy (Zimmerman, 1993). From a generative modeling perspective,
the most useful form of anisotropy is Geometric Anisotropy, where coordinates
are linearly transformed, i.e., rotated and stretched, to allow for different mag-
nitudes of correlation in different directions. Budrikaite and Ducinskas (2005)
explored different forms of geometric anisotropic variograms. Eriksson and Siska
(2000) provided the geometrical details for modeling various types of anisotropy
(range, sill, power, slope, nugget) on an ellipse. Allard et al. (2016) derived a
directional representation of anisotropies to build a large class of models that in-
clude and go beyond classical anisotropies such as the geometric and zonal ones.
Porcu et al. (2006) incorporated anisotropy into spatio-temporal covariance mod-
els. Ecker and Gelfand (1999) proposed a Bayesian methodology for simultane-
ously estimating the linear transformation of the coordinates and other variogram
parameters, which also allows full inference for any characteristic of the geomet-
rically anisotropic model. Following Ecker and Gelfand (1999) who proposed to
use objective, independent priors for model parameters, Kazianka (2013) devel-
oped default priors and studied their posterior propriety.

This paper attempts to illuminate when and how much geometric anisotropic
(henceforth anisotropic) models for random effects in geostatistical settings im-
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prove predictive performance. We use a transformation matrix parametrized by a
decay parameter, a rotation angle and an anisotropy ratio. In the form of a simu-
lation study, we compare the predictive performance of isotropic and anisotropic
models for data generated under anisotropy. We also test the sensitivity of the
models to different parameter values of the data generating model, including dif-
ferent sample sizes, different choices of anisotropy ratio, and different scales and
ratios of spatial variance and pure error. We find that geometric anisotropy yields
better predictive performance when the data significantly departs from isotropy
(anisotropy ratio is much greater than one), and the improvement is more promi-
nent when spatial variance is greater than pure error. We use Metropolis Hastings
algorithm to perform full Bayesian inference for all model parameters. We then
fit isotropic and anisotropic models to data on scallop catches used in Ecker and
Gelfand (1999) which have been shown to suggest anisotropic behavior. We show
that the anisotropic model performs better in terms of empirical coverage, predic-
tive mean squared error and continuous rank probability score.

The paper proceeds as follows. Section 2 formally defines the isotropic and
geometric anisotropic models we use for point-referenced data. Section 3 details
our model fitting algorithm and distribution theory for making predictions. Sec-
tion 4 lays out the metrics we use for model comparison. Section 5 demonstrates
the simulation exercise with associated results. Section 6 presents modeling re-
sults for scallop catches data. Finally, Section 7 discusses future work.

2 Models

2.1 Point-Level Models
Suppose {Y (s) : s ∈ D} is a stochastic process where D is a fixed subset of r-
dimensional Euclidean space. When r = 2, we say that Y (s) is a spatial process.
Data generated by such spatial process Y (s) where s varies continuously overD is
point-referenced data. For example, Y (s) may represent pollutant level over a re-
gion, and we observe pollutant measurements at a finite set of locations{s1, ..., sn}
where there are monitoring stations. Even though Y (s) exists on an infinite di-
mensional function space, in reality we can only observe data at a finite number of
locations. The data is a partial realization of the spatial process. The problem fac-
ing statisticians is to make inference about the spatial process Y (s) and prediction
at new locations based on this partial realization.

We model Y (s) with a Gaussian Process. Suppose our spatial process has
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a mean µ(s) = E(Y (s)) associated with it and the variance of Y (s) exists for
all s ∈ D. Y (s) is said to be Gaussian if for any n ≥ 1 and any set of n sites
{s1, ..., sn}, Y = (Y (s1), ..., Y (sn))T has a multivariate normal distribution. The
remarkable feature of Gaussian Process models is that, despite only observing the
spatial surface at a finite number of locations, we can infer about the process at an
uncountable number of locations by specifying the association between pairs of
locations through structured dependence. Suppose we assume the random vari-
ables at two locations depend on the distance of the locations. If we assume
spatial correlation is a function solely of the distance dii′ between si and si′ , the
covariance function is isotropic. One commonly used isotropic covariance spec-
ification is the exponential model, where the covariance between measurements
at two locations is an exponential function decreasing in the distance between the
two locations.

Suppose we have observations Y = {Y (s1), ..., Y (sn)}. We assume a multi-
variate normal model where

Y ∼ Nn(µ1,Σ(θ)) (1)

where Nn denotes the n-dimensional normal distribution, µ is the global mean1,
and (Σ(θ))ii′ gives the covariance between Y (si) and Y (si′).

If we use an exponential correlation function,

Σ(θ)ii′ =

{
σ2 + τ 2 if dii′ = 0

σ2exp(−φdii′) if dii′ > 0
(2)

where dii′ is the distance between site si and si′ , φ > 0 is the decay parameter
(1/φ is the range parameter), σ2 > 0 is partial sill or spatial variance, τ 2 > 0 is
nugget or pure error, and τ 2 + σ2 is sill. The parameters of the covariance matrix
are θ = (σ2, τ 2, φ)T .

2.2 Isotropy
Suppose we observe {Y (s) : s ∈ D ⊆ Rr}. For any h ∈ Rr, intrinsic sta-
tionarity assumes that E(Y (s + h) − Y (s)) = 0 and that Var(Y (s + h) − Y (s))
is a function of the separation vector h, denoted by 2γ(h), the variogram. The
stronger assumption of weak stationarity asserts that E(Y (s)) = µ (the mean is

1We assume a constant mean surface here and in the sequel since our focus is on the effects of
the choice of covariance function.
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constant) and Cov(Y (s), Y (s+h)) = C(h), and implies intrinsic stationarity with
γ(h) = C(0)− C(h). Under isotropy, the semivariogram function γ(h) depends
on the separation vector only through its length d = ‖h‖. That is, the variogram is
a function of the Euclidean distance d between two sites. The sill is limd→∞ 2γ(d).
The range is the distance at which the sill is reached; sites separated by distances
larger than the range are uncorrelated. The effective range is defined as the dis-
tance such that Corr(Y (si), Y (sj)) = 0.05. The nugget is limd→0 2γ(d), which
need not be zero, to allow for measurement error and microscale variability.

2.3 Geometric Anisotropy
Isotropic variograms are popular because of their simplicity and interpretability.
However, in many cases correlation function does not simply depend on the dis-
tance between locations, but depends on separation vector between locations. As
a result, association depends upon direction. Here we explore covariance func-
tions that are stationary but not isotropic. When the variogram is a function of
both length and orientation of the separation vector h, the process Y (s) is said to
be anisotropic. That is, the semivariogram is γ(h) rather than γ(‖h‖).

Following Zimmerman (1993), anisotropy can take three general forms: sill
anisotropy, nugget anisotropy, and range anisotropy. When lima→∞ γ(ah/‖h‖)
depends on the separation vector h, the situation is referred to as sill anisotropy.
When lima→0 γ(ah/‖h‖) depends on h, the situation is referred to as nugget
anisotropy. Nugget anisotropy is typically ascribed to correlated measurement
errors. A third type of anisotropy is range anisotropy where the range depends
upon direction. This is the form most often seen in practice. A common case of
range anisotropy is geometric anisotropy where we set

Cov(s− s′) = σ2ρ((s− s′)TB(s− s′)) (3)

where B is a positive semidefinite matrix and ρ is a valid correlation function in
Rr. When r = 2, B is 2 × 2, and the correlation specification will have three
parameters rather than one decay parameter. B = φI corresponds to isotropy and
arises from a linear transformation of coordinates under a general B. The contour
corresponding to ρ = 0.05 provides the range in each spatial direction, and its
shape is described by an ellipse.

As detailed in Eriksson and Siska (2000), for sites si and sj , we define the
covariance function as:

Σ(θ)ij = σ2exp(−φ(hTijBhij)
1/2) + τ 2I(i = j) (4)
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where

B = AAT , A =

[
cos(α) sin(α)
−sin(α) cos(α)

] [
1/r 0
0 1

]
(5)

where hij = si − sj . Here, α is orientation of the associated ellipse and r is
anisotropy ratio (ratio of the major axis to the minor axis of the ellipse). The
B matrix rotates and stretches the range of the covariance. Again, when B is a
constant times the identity matrix, the covariance function is isotropic.

The range c in direction θ is obtained by taking a unit vector in direction θ,
hθ, and then solving ρ(c2θh

T
θBhθ) = .05 for cθ. In the case of the exponential

correlation function, we have

exp(−cθ(hTθBhθ)1/2) = 0.05 (6)

where hθ = (cos(θ),sin(θ)).
Figure 1 shows spatial ranges in every direction from 0◦ to 360◦ with different

combinations of the rotation angle and anisotropy ratio. The right panel shows the
range in polar coordinates, forming ellipses. We can see that when the anisotropy
axis ratio is closer to 1, the range does not vary much by direction and associated
ellipse is closer to a circle.

6



0 50 100 150 200 250 300 350

0.
0

0.
5

1.
0

1.
5

2.
0

angle=60, ratio=1.5

ra
ng

e

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

6
−

0.
2

0.
2

0.
6

angle=60, ratio=1.5

ra
ng

e

0 50 100 150 200 250 300 350

0.
0

0.
5

1.
0

1.
5

2.
0

angle=150, ratio=1.5

ra
ng

e

−1.0 −0.5 0.0 0.5 1.0

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

angle=150, ratio=1.5

ra
ng

e

0 50 100 150 200 250 300 350

0.
0

0.
5

1.
0

1.
5

2.
0

angle=60, ratio=4

ra
ng

e

−3 −2 −1 0 1 2 3

−
1.

5
−

0.
5

0.
5

1.
5

angle=60, ratio=4

ra
ng

e

0 50 100 150 200 250 300 350

0.
0

0.
5

1.
0

1.
5

2.
0

angle=150, ratio=4

ra
ng

e

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

angle=150, ratio=4

ra
ng

e

Figure 1: Spatial range with different specifications of rotation angle and
anisotropy ratio

3 Methodology

3.1 Model Fitting
We use the Bayesian framework to perform inference on model parameters and
predictions for new locations. Not only do we simultaneously estimate for the
ratio of major axis to minor axis of the ellipse, the angle of orientation of the
ellipse with respect to the x-axis, the decay parameter, and the additional vari-
ogram parameters, but we provide complete inference in the form of a posterior
distribution for each parameter. In addition, the Bayesian framework enables in-
corporation of prior information. If a priori, the process is expected to exhibit
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geometric anisotropy whose characteristics we can quantify, this information is
easily built into the prior specifications and the model.

We model the data with a Gaussian Process

Y ∼ Nn(µ1,Σ(θ)) (7)

where Σ(θ) is specified by (4) and (5), and θ = (σ2, τ 2, φ, α, r)T . Under the
likelihood implied by (7) for a set of say n locations, we complete the Bayesian
formulation by assuming the prior takes the form

π(µ, θ) = π(µ, σ2, τ 2, φ, α, r) = π(µ)π(σ2)π(τ 2)π(φ)π(α)π(r), (8)

i.e., assuming all the parameters are independent.
We use a weak N(0, 1000) prior for µ. We use vague inverse gamma distri-

butions for the variances σ2 and τ 2 and anisotropy ratio r with shape and scale
parameters both equal to one, implying no prior mean or variance. We put a
uniform(0, π) prior on rotation angle α and a uniform(0.1D, 0.5D) on range 1/φ,
where D is the maximum distance between locations.

We use a Metropolis-Hastings sampling algorithm to obtain samples from the
posterior distribution of all parameters p(θ|y). The Metropolis-Hastings algorithm
is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of ran-
dom samples from a probability distribution for which direct sampling is difficult.
As more and more sample values are produced, the distribution of values more
closely approximates the desired posterior distribution p(θ|y).

Intuitively, assume we have a collection of {θ(1), ..., θ(s)}. To generate a new
value θ(s+1), we sample a new value θ∗ that is nearby θ(s) and consider whether
to accept the sampled θ∗ into the collection of θ′s. We sample θ∗ from a pro-
posal distribution J centered on θ(s), and accept θ∗ if p(θ∗|y) > p(θ(s)|y). If
p(θ∗|y) < p(θ(s)|y), we accept θ∗ with some probability. In Metropolis algorithm,
the proposal distribution J is symmetric. That is, J(θ∗|θ(s)) = J(θ(s)|θ∗). In
Metropolis-Hastings, J may not be symmetric.

The Metropolis-Hastings algorithm proceeds as follows.

1. Sample θ∗ ∼ J(θ|θ(s))

2. Compute acceptance ratio r:

r =
p(θ∗|y)

p(θ(s)|y)
× J(θ∗|θ(s))
J(θ(s)|θ∗)

=
p(y|θ∗)p(θ∗)
p(y|θ(s))p(θ(s))

× J(θ∗|θ(s))
J(θ(s)|θ∗)
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(In the case of Metropolis,
J(θ∗|θ(s))
J(θ(s)|θ∗)

= 1)

3. Sample u ∼ Uniform(0, 1). Set θ(s+1) = θ∗ if u < r and set θ(s+1) = θs

otherwise.

We use appropriate proposal distributions for different parameters. For rota-
tion angle α, we generate normal proposals mod π. For anisotropy ratio r, we
generate proposals from truncated normal distribution from 0 to∞ as r can only
be positive. We also experimented with using log normal proposal for r, but the
sampler behaved poorly as it frequently generated extremely big values. For σ2,
τ 2 and φ we generate proposals from log normal distribution. Finally, we generate
µ from a normal distribution. Table 1 lists the proposal and prior distributions we
use for all the parameters.

Because α and r are highly correlated, we update them jointly. We tune the
variances of the proposal distributions so that we accept around 25% of all gen-
erated samples to achieve optimal efficiency of the sampler. If proposals vary too
much, the sampler will reject too many samples which is inefficient. If proposals
vary too little, the chain of samples will not move very much and might get stuck
in a local mode.

Proposal Distribution Prior Distribution

α Normal (mod π) Uniform(0, π)

r Truncated Normal (0,+∞) Inverse Gamma(1, 1)

σ2 Log Normal Inverse Gamma(1, 1)

τ 2 Log Normal Inverse Gamma(1, 1)

φ Log Normal Uniform (3/0.5D, 3/0.2D)

µ Normal Normal(0, 1000)

Table 1: Proposal and prior distributions for Metropolis algorithm
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3.2 Kriging
Spatial prediction in the point-referenced data setting is often referred to as krig-
ing. Given observations Y = (Y (s1), ..., Y (sn)), how do we predict Y (s0), where
s0 is a site that has not been observed? An observation at location we want to
predict s0 follows the following distribution:

y(so) = µ+ w(s0) + ε(s)

There are two ways of formulating the posterior predictive distribution. The
first way samples spatial random effect w:

[Y (s0)|Y ] =

∫
[Y (s0)|w(s0), θ][w(s0)|w, θ][w|θ, Y ][Y |θ]

[w|θ, Y ] = N((
1

τ 2
I + Σ−1)−1

1

τ 2
(Y − µ1), (

1

τ 2
I + Σ−1)−1)

[w(s0)|w] = N(rTΣ−1w, σ2 − rTΣ−1r)

[Y (s0)|w(s0), θ] = N(µ+ w(s0), τ
2)

where r is the n× 1 covariance matrix between the new location s0 and all other
observed locations, cov(w(s0), w(si)), i = 1, 2, ...n. Σ is the n × n covariance
matrix between the random effects at the observed locations, (w(s1), ...w(sn)).

The second way marginalizes out spatial random effect w:

[Y (s0)|Y ] =

∫
[Y (s0)|Y, θ][θ|Y ]

[Y (s0)|Y, θ][θ|Y ] = N(µ+ rT (Σ + τ 2I)−1(Y − µ1), σ2 + τ 2 − rT (Σ + τ 2I)−1r)

We use the second approach in our algorithm as it has been shown to yield
better sampling behavior.

4 Model Comparison
We use the following three metrics for model comparison.
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4.1 Predictive Mean Squared Error
The predictive mean squared error measures the mean squared difference between
the predicted value and the observed value averaged over all hold out locations.

PMSE =
1

n

∑
(Ŷ − Yobs)2

In the Bayesian context, Ŷ for each location is the posterior predictive mean.
We then average the squared difference between Ŷ and the observed value over
all hold out locations.

4.2 Empirical Coverage
Empirical coverage assesses how well credible intervals, derived from the poste-
rior predictive distributions of the predictions, capture the observed values of the
hold out sample. Suppose we obtain 90% credible intervals from the posterior
predictive distributions for each of the hold out locations. If the credible intervals
capture the observed value for <90% hold out locations, we have under coverage.
If the credible intervals capture the observed value for >90% hold out locations,
we have over coverage. Since the empirical coverage is random, we will criti-
cize the adequacy of the model when the departure from the nominal coverage is
consequential.

4.3 Continuous Rank Probability Score (CRPS)
To examine how concentrated the predictive distribution of Y (s0) is around the
observed value, we use the Continuous Rank Probability Score (CRPS) metric, the
squared integrated distance between the predictive distribution and the degenerate
distribution at the observed value,

CRPS(F, y) =

∫ ∞
−∞

(F (u)− I(u ≥ y))2du

where F is the predictive distribution and y is the observed value. In our case,
Y (s0) is the observation and F is the posterior predictive distribution for Y (s0).
With a collection of hold out observations and associated predictive distributions,
we would average the CRPS over these observations for model comparison. In
our case, under MCMC model fitting, we would not have F directly, but rather a
sample from F . We use the alternative form of CRPS:
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CRPS(F, y) =
1

2
EF |Y − Y ′|+ EF |Y − y|

where Y and Y ′ are independent replicates from F . With samples from F , we can
use Monte Carlo integration to compute CRPS.

5 Simulation Study
We design a set of simulations to compare the predictive performance of isotropic
and anisotropic models for data generated under anisotropy. We test the sensitivity
of the models to different parameter values of the data generating model, including
different sample sizes, different choices of anisotropy ratio, and different scales
of spatial variance and pure error. We don’t vary the choice of rotation angle, as
the angle does not impact the degree of departure from isotropy.

We randomly generate locations on a unit square. We generate observations
following a multivariate normal distribution with constant global mean 0 and ex-
ponential covariance function as specified in (4) and (5). Spatial range is 0.5,
around half of the maximum distance between the locations. The decay parame-
ter φ is 3/0.5 = 6. We fit the model and predict for a hold out sample using the
methodology outlined in section 3. We fit the isotropic model using the R package
spBayes (Finley et al., 2007, 2015). We compare the predictive performance of
the isotropic model and the anisotropic model using empirical coverage, PMSE
and CRPS as defined in Section 4.

We choose three different anisotropy ratios, 1.5, 4 and 8, as well as four dif-
ferent combinations of spatial variance σ2 and pure error τ 2. We anticipate that,
when the anisotropy ratio is big, spatial variance of simulated data is high, and
spatial variance is significantly larger compared to pure error, the predictive per-
formance of the anisotropic model will significantly improve over the isotropic
model. We use two different sample sizes 100 (with 40 additional observations
for hold out) and 500 (with 100 additional observations for hold out). We further
anticipate that the two models will be more distinguishable with the bigger sample
size.

Table 2-7 display the comparisons of empirical coverage, PMSE, and CRPS
of anisotropy and isotropy under the different data generation scenarios. All re-
sults are averaged over 10 randomly generated datasets. When sample size is
100, anisotropy yields smaller MSE than isotropy under all but one scenario when
anisotropy ratio is 1.5. As we expect, the improvement is more prominent when
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anisotropy ratio is 8 (10%) than when it is 4 (1%), when spatial variance is greater
than non-spatial variance (11%) than when they are equal (3%) and when both
variances are small (7%) than when they are big (6%). The CRPS confirms these
results. The empirical coverage of the anisotropic model is closer to the nominal
90% under all scenarios. These conclusions are confirmed when sample size is
500. Sample size does not seem to make a difference in distinguishing the mod-
els.

r = 1.5 (0.9275, 0.93)

r = 4 (0.92, 0.9275)

r = 8 (0.9125, 0.925)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.9175, 0.9175) (0.9575, 0.96)

σ2 = 1 (0.89, 0.8775) (0.9125, 0.925)

Table 2: Model comparison for simulated data, 90% Empirical Coverage
(Anisotropy, Isotropy), sample size = 100

r = 1.5 (0.925, 0.9)

r = 4 (0.916, 0.906)

r = 8 (0.9, 0.902)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.905, 0.904) (0.928, 0.912)

σ2 = 1 (0.896, 0.898) (0.9, 0.902)

Table 3: Model comparison for simulated data, 90% empirical coverage
(anisotropy, isotropy), sample size = 500
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r = 1.5 (0.588, 0.528)

r = 4 (0.497, 0.504)

r = 8 (0.411, 0.457)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.265, 0.275) (0.082, 0.093)

σ2 = 1 (1.377, 1.407) (0.411, 0.457)

Table 4: Model comparison for simulated data, predictive mean squared error
(anisotropy, isotropy), sample size = 100

r = 1.5 (0.487, 0.399)

r = 4 (0.334, 0.338)

r = 8 (0.318, 0.345)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.226, 0.239) (0.061, 0.068)

σ2 = 1 (1.141, 1.197) (0.318, 0.345)

Table 5: Model comparison for simulated data, predictive mean squared error
(anisotropy, isotropy), sample size = 500

r = 1.5 (0.431, 0.409)

r = 4 (0.397, 0.399)

r = 8 (0.364, 0.385)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.292, 0.299) (0.165, 0.176)

σ2 = 1 (0.664, 0.672) (0.364, 0.385)

Table 6: Model comparison for simulated data, continuous rank probability score
(anisotropy, isotropy), sample size = 100
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r = 1.5 (0.391, 0.355)

r = 4 (0.325, 0.326)

r = 8 (0.317, 0.329)

σ2/τ 2 = 1 σ2/τ 2 = 5

σ2 = 0.2 (0.268, 0.275) (0.139, 0.147)

σ2 = 1 (0.603, 0.617) (0.317, 0.329)

Table 7: Model comparison for simulated data, continuous rank probability score
(anisotropy, isotropy), sample size = 500

6 A real Data Example: Scallop Catches
We apply the models to data on sampling of scallop abundance on the continental
shelf off the coastline of the northeastern U.S. The data comes from a survey con-
ducted by the Northeast Fisheries Science Center of the National Marine Fisheries
Service. Figure 2 shows the sampling sites for 1993 and Figure 3 shows the spatial
surface as well as contours of the data at the sites used for model fitting. There are
a total of 148 sampling sites. We use 118 for model fitting and 30 as hold out data
for kriging. We see a lot more sampling in southwest to northeast direction than
in the northwest to southeast direction. Evidently it is more appropriate to follow
the coastline in searching for scallops.
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Figure 2: Sites sampled in the Atlantic Ocean for 1993 scallop catch data (fitted
and hold out)
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Figure 3: Surface and contour plot for 1993 scallop data (fitted)

Again, we fit the anisotropic model using methodology detailed in section 3,
and the isotropic model using spBayes. In both cases, we run 30,000 iterations,
using a burn-in of 20,000 and a thinning rate of 1/20 for the remaining 10,000 sam-
ples. Therefore, we retain 500 posterior samples of all model parameters. Figure 4
shows the density plot of the remaining posterior samples under anisotropy. Table
8 shows the posterior means and 95% credible intervals for all model parameters
under isotropy and anisotropy.
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Figure 4: Density plots of posterior samples for all parameters under anisotropy
(after burn-in and thinning)
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Parameters µ φ σ2 τ 2 α r

Isotropy NA 4.92
(2.49, 8.71)

5.20
(3.10, 8.94)

0.49
(0.19, 1.15)

NA NA

Anisotropy 2.40
(0.57, 3.96)

6.3
(2.23, 13.24)

4.36
(1.77, 10.81)

1.23
(0.30, 2.07)

2.35
(1.31, 2.74)

11.2
(0.49, 26.27)

Table 8: Posterior means and 95% credible intervals for all model parameters
under isotropy and anisotropy

To show evidence for departure from isotropy, we obtain the posterior distribu-
tion for range in each direction. Figure 5 shows the mean posterior range plotted
as a function of angle with associated individual 95% credible intervals. The plot
on the right shows the range in polar coordinates which forms an ellipse.
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Figure 5: Mean posterior range plotted as a function of angle with associated
individual 95% credible intervals. The plot on the right shows the range in polar
coordinates which forms an ellipse.

We evaluate the predictive performance of the two models on the 30 hold-out
sites using empirical coverage, PMSE and CRPS, as displayed in Table 9. The
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anisotropic model reduces average PMSE by 12% and reduces average CRPS by
7% over the 30 sites. Anisotropy also has higher empirical coverage than isotropy.

Model EC PMSE CRPS

Isotropy 86.7% 1.792 0.781

Anisotropy 96.7% 1.581 0.725

Table 9: Model comparison of isotropy and anisotropy for scallops data: 90%
empirical coverage, PMSE, and CRPS

Figure 6 shows the empirical coverage of isotropy and anisotropy, where the
dots represent the observed values and the grey lines represent the 90% credible
interval of the posterior predictive samples. We can see the credible intervals
produced by isotropy fail to capture the observed value for 4 of the 30 sites, while
anisotropy fails to capture 1 site.
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Figure 6: Model comparison: empirical coverage of isotropy and anisotropy

Figure 7 shows the posterior predictive distribution and PMSE for 4 randomly
selected hold out sites under isotropy and anisotropy. The vertical line represents
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the observed value. Under anisotropy, the predictive distributions are more closely
concentrated around the observed value, and the PMSE’s are smaller.

pmse = 8.49 pmse = 4.271
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Figure 7: Model comparison: posterior predictive distribution and PMSE for 4
hold out sites under isotropy and anisotropy. Vertical line represents the observed
value.

7 Discussion and Future Work
This paper explored when and how much geometric anisotropic models for ran-
dom effects in geostatistical settings improve predictive performance over isotropic
models. We compared the predictive performance of isotropic and anisotropic
models for data generated under anisotropy, using different values of the pa-
rameters in the data generating model, including different sample sizes, different
choices of anisotropy ratio, and different scales and ratios of spatial variance and
pure error. We found that anisotropy yields better predictive performance when
the data significantly departs from isotropy (anisotropy ratio is much greater than
one), and that the improvement is more prominent when the anisotropy ratio is
higher and when spatial variance is higher compared to pure error, regardless of
sample size. The anisotropic model yields much better predictive results on the
real scallop catches data, which have been suggested to exhibit anisotropic be-
havior. We performed full Bayesian inference on all model parameters using a
Metropolis-Hastings algorithm for model fitting.
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Future work involves extending the geometric anisotropic model assessment
to multivariate observations at locations and to space-time settings. We will also
explore different ways of constructing stationarity by using different covariance
structures. In particular we are interested in exploring product covariance func-
tion, i.e. the product of one-dimensional covariance function in the x-coordinate
and a one-dimensional covariance function in the y-coordinate, which takes the
following form:

C(d) =

{
τ 2 + σ2 if d = 0

σ2exp(−φxdx)exp(−φydy) if d > 0

where dx is the distance between x-coordinates and dy is the distance between
y-coordinates.
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