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1 Bayesian Nonparametric Models

A model is parametric if it is indexed by a parameter with values on a finite
parameter space. For example, in a regression problem, suppose the data show a
linear trend. We can then use a linear function to model the data. The parameter
space is the set of linear functions on R. A linear function on R can be specified
using two parameters, a coefficient β0 for the intercept and a coefficient β1 for
the slope. In this case, the parameter space is two-dimensional, expressed as
R2. The linear function is thus parametric. Suppose the data show a non-linear
trend. The parameter space then becomes be the set of all continuous functions
on R. The parameter space is now infinite-dimensional, which means the model is
nonparametric. A Bayesian nonparametric model is a Bayesian model on an
infinite-dimensional parameter space, which means we have to define a probability
distribution (the prior) on an infinite-dimensional space.

Traditionally, the prior over distributions is given by a parametric family. But
constraining distributions to lie within parametric families limits the scope and
type of inferences that can be made. The nonparametric approach instead uses a
prior over distributions with wide support, typically the support being the space
of all distributions. Compared to parametric models, Bayesian nonparametric
models are more flexible in that they can adapt their complexity to the data:
the number of parameters can grow with data size. This becomes particularly
helpful in a clustering problem where the number of clusters can grow as new
data points are observed.

2 Mixture Models

A mixture model corresponds to the probability distribution of a random vari-
able that is derived from a collection of other random variables as follows: first,
a random variable is selected from the collection according to given probabilities
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of selection, and then the value of the selected random variable is realized. The
individual distributions that are combined to form the mixture distribution are
called the mixture components, and the probabilities (or weights) associated
with each component are called the mixture proportions or mixture weights.
When the number of components in mixture model is finite, the model is a
finite mixture model. When the mixture components are countably infinite,
the model is an infinite mixture model.

To give a more concrete example, mixture models are used in clustering prob-
lems. We have observations x1, ..., xn, and the objective is to divide the sample
into k subsets, the clusters. We want to group them in such a way that obser-
vations in the same cluster are more similar to each other than to those in other
clusters. Each observation is assigned a unique cluster label 1, 2, ..., k. Such an
assignment defines a partition of the observations x1, ..., xn into k disjoint sets.
Consider the problem of grouping college students based on their hobbies such
as sports, music or reading. Each student belongs to a unique cluster. We need
to figure out both both the identities of the clusters and the assignments of each
student to them.

Mixture models can be used to understand the group structure of a data
set. A finite mixture model assumes that there are K clusters, each associated
with a parameter θk. Each observation xi is assumed to be generated by first
choosing a cluster k according to Pk and then generating the observation from its
corresponding observation distribution parameterized by θk. Bayesian mixture
models further contain a prior over Pk, and a prior over the cluster parameters
θk.

2.1 Definition

A finite mixture model has the following components:

• N random variables corresponding to observations, each distributed accord-
ing to a mixture of K components, with each component belonging to the
same parametric family of distributions but with different parameters. It
is assumed that it is unknown which mixture component underlies each
particular observation.

• N corresponding unobserved(latent) indicator variables specifying the iden-
tity of the mixture component of each observation, each distributed accord-
ing to a K-dimensional multinomial distribution.

• A set of K parameters, each specifying the parameter of the corresponding
mixture component. Observations distributed according to a mixture of K-
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dimensional multinomial distributions will have a vector of K probabilities,
collectively summing to 1.

• A set of K mixing proportions parametrizing the K-dimensional multinomial
distribution, each of which is a probability (a real number between 0 and 1
inclusive), all of which sum to 1.

In a Bayesian setting, the mixing proportions and parameters of the mixture
components will themselves be random variables, and prior distributions will be
placed over the variables. In such a case, the mixing proportions are typically
viewed as a K-dimensional random vector drawn from a Dirichlet distribution
(the conjugate prior of the multinomial distribution), and the parameters will be
distributed according to their respective conjugate priors.

Consider a Bayesian mixture model consisting of K components:

zi|π1...πk ∼ Mult(π1...πk)

xi|zi, θk ∼ F (θzi)

π1...πk|α1...αk ∼ Dir(α1...αk)

θk|H ∼ H

where xi is the observation i, zi is the indicator variable specifying the mixture
component of observation i, π is the mixing proportion denoting the probability
for each mixture component, α is the hyperparameter of the Dirichlet prior, H is
the prior distribution over component parameters θk, and F (θ) is the component
distribution parametrized by θ.

In a clustering problem, we can express the cluster assignment as a random
variable Z. Then Zi = k means Xi belongs to cluster k. We can obtain the
distribution characterizing a single cluster k by conditioning on Z,

Pk(A) = P [X ∈ A|Z = k].

We define the probability for a newly generated observation to be in cluster k,

πk = P (Z = k)

where
∑

k πk = 1, since the πk are probabilities of mutually exclusive events.
If we assume that all Pk are distributions with the conditional density p(x|θk),

then the distribution of X has density
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p(x) =
∑
k∈N

πkp(x|θk)

where πk is the mixing proportion and θk are parameters associated with compo-
nent k. A model with this density function is called a mixture model. If the
number of clusters is finite, it is then a finite mixture model. The density can
also be written in the form of an integral

p(x) =
∑
k∈N

πkp(x|θk) =

∫
p(x|θ)θdθ

where θ =
∑
k∈N

πkδθk is a discrete mixing measure encapsulating all the param-

eters of the mixture model and δθ is a point mass(indicator function) centered
at θ. Probability measures are functions with certain special properties which
allow them to be interpreted as distributions over some probability space Ω. A
Bayesian mixture model is therefore a mixture model with a random mixing
measure

Θ =
∑
k∈N

πkδθk

Bayesian infinite mixture models use mixing measures consisting of a count-
ably infinite number of components

Θ =
∞∑
k=1

πkδθk

To define a Bayesian infinite mixture model, we have to choose the component
densities p(x|θ), and we have to generate a random probability measure Θ. We
need a prior over the infinite discrete mixing measure Θ, and the most common
prior to use is a Dirichlet process. The resulting mixture model is called a DP
mixture model (see Section 3.3.1).

2.2 Dirichlet Multinomial Distribution

2.2.1 Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution.
Whereas the binomial distribution is the probability distribution of the number of

4



successes for one of two outcomes (success or failure) in n trials, in a multinomial
distribution, each trial results in exactly one of some fixed finite number k possible
outcomes, with probabilities p1, ..., pk. While the trials are independent, their
outcomes x are dependent because they must be summed to n. For example,
in one trial, one of the elements xi of the k-dimensional vector equals 1, and
all remaining elements equal 0. Suppose k = 6, i = 3, then x3 = 1, x =
(0, 0, 1, 0, 0, 0),

∑6
i=1 xi = n = 1.

If the random variables xi indicate the number of times outcome i is observed
over n trials, the vector x = (x1, ..., xk) follows a multinomial distribution with
parameters n and p, where p = (p1, ..., pk), pi ≥ 0 for i = 1, ..., k,

∑k
i=1 pi = 1

and
∑k

i=1 xi = n. The distribution of x is then

p(x|p) =
k∏
i=1

pxii

The joint distribution of (x1, ..., xk) is

p(x1, ..., xk|p) =
n!

x1!...xk!

k∏
i=1

pxii

It can also be expressed using Gamma function as

p(x1, ..., xk|p) =

Γ(
k∑
i=1

xi + 1)

k∏
i=1

Γ(xi + 1)

k∏
i=1

pxii

2.2.2 Dirichlet Distribution

Dirichlet distribution is a family of conjugate priors for parameters of the multi-
nomial distribution. It’s a distribution over the k-dimensional parameter vector
p (in a mixture model they are the mixing proportions) of a multinomial distri-
bution.

If we use p = (p1, ..., pk) to denote the k-dimensional parameter vector, where
pi ≥ 0 for all i and

∑k
i=1 pi = 1, then distribution of p|α is Dir(α1, ..., αk).

p(p|α) =

Γ(
k∑
i=1

αi)

k∏
i=1

Γ(αi)

k∏
i=1

pαi−1
i
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2.2.3 Dirichlet Multinomial Distribution

Given

p1, ..., pk ∼ Dir(α1, ..., αk)

x1, ..., xk ∼ Mult(p1, ..., pk)

The posterior is

f(p|x1, ..., xk) ∝ p(x1, ..., xk|p)p(p|α)

∝
k∏
i=1

pαi−1
i

k∏
i=1

pxii

=
k∏
i=1

pαi+xi−1
i

which is Dir(α1 + x1, ..., αk + xk).

3 Dirichlet Process

Dirichlet processes are a family of stochastic processes whose realizations are
are probability measures with probability one. Stochastic processes are distribu-
tions over function spaces, with sample paths being random functions drawn from
the distribution. In the case of the DP, it is a distribution over probability mea-
sures, which are functions with certain special properties which allow them to be
interpreted as distributions over some probability space Ω. A Dirichlet process
is a probability distribution whose domain is itself a set of probability distri-
butions; it’s a distribution over random discrete mixing measure. Distributions
drawn from a Dirichlet Process are discrete and cannot be described using a finite
number of parameters. Dirichlet process can be seen as the infinite-dimensional
generalization of the Dirichlet distribution. In the same way as the Dirichlet
distribution is the conjugate prior for the multinomial distribution, the Dirich-
let process is the conjugate prior for infinite random discrete distributions. A
particularly important application of Dirichlet processes is as a prior probability
distribution in infinite mixture models.

3.1 Formal Definition

Dirichlet process has Dirichlet distributed finite dimensional marginal distribu-
tions. Let Θ be a distribution over parameter space Ω and α be a positive
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real number. Then for any finite measurable partition A1, ..., Ak of Ω, the k-
dimensional vector (Θ(A1), ...,Θ(Ak)) is random since Θ is random. We say Θ is
Dirichlet process distributed with base distribution G and concentration param-
eter α, Θ ∼ DP(α,G), if

(Θ(A1), ...,Θ(Ak)) ∼ Dir(αG(A1), ..., αG(Ak))

for every finite measurable partition A1, ..., Ak of Ω.

3.2 Posterior Distribution and Predictive Distribution

Let Θ ∼ DP(α,G). Since Θ is a random distribution, we can in turn draw
samples from Θ itself. Let θ1, ..., θn be a sequence of independent draws from
Θ. We are interested in the posterior distribution of Θ given observed values of
θ1, ..., θn, which is an updated DP

Θ|θ1, ..., θn ∼ DP(α + n,
α

α + n
G+

1

α + n

n∑
k=1

δθk)

The predictive distribution for θn+1 conditioned on θ1, ..., θn and with Θ marginal-
ized out is

θn=1|θ1, ..., θn ∼
α

α + n
G+

1

α + n

n∑
k=1

δθk

The posterior base distribution given θ1, ..., θn is also the predictive distribution
of θn+1. Since the values of draws are repeated, let θ1, ..., θm be the unique
values among θ1, ..., θn, and nk be the number of repeats of θk. The predictive
distribution can be equivalently written as

θn=1|θ1, ..., θn ∼
α

α + n
G+

1

α + n

m∑
k=1

nkδθk

Notice that value θk will be repeated by θn+1 with probability proportional to nk,
the number of times it has already been observed. The larger nk is, the higher
the probability that it will grow. This is a rich-gets-richer phenomenon, where
large clusters (a set of θi’s with identical values θk being considered a cluster)
grow larger faster.
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3.2.1 Sampling from a Dirichlet Process

Suppose that the generation of values X1, . . . , Xn can be simulated by the fol-
lowing algorithm:

1. Draw X1 from the distribution G.

2. For i > 1:

(a) with probability α
α+n−1

, draw Xi from G.

(b) With probability nk

α+n−1
, setXi = k, where nk is the number of previous

observations Xi, i < n, such that Xi = k.

An analogy to this process is the Polya Urn Scheme. Specifically, each value
in Ω is a unique color, and draws Xi are balls with the value being the color of
the ball. In addition we have an urn that contains previously seen balls. In the
beginning there are no balls in the urn, and we pick a color drawn from G (draw
Xi ∼ G), paint a ball with that color, and drop it into the urn. In subsequent
steps, say the (n + 1)st, we will either, with probability α

n+α−1
, pick a new color

(draw Xn+1 ∼ G), paint a ball with that color and drop the ball into the urn, or,
with probability n

n+α−1
, reach into the urn to pick a random ball out (draw Xn+1

from the empirical distribution), paint a new ball with the same color and drop
both balls back into the urn.

In the context of a clustering problem, this means that, with probability
proportional to the number of data points we have already seen, we randomly pick
a point we have seen before. Points reoccur and clusters form. The clusters have
a “rich gets richer” property: picking from a cluster that is already large is more
probable than picking from one that is small. With probability proportional to
α, we draw a new point from G. We create a new cluster. If G is is a continuous
function, such as a Gaussian distribution, we will never draw the same point
again.

3.3 Stick-Breaking Process

To define a Bayesian infinite mixture model, we have to generate a random prob-

ability measure Θ =
∞∑
k=1

πkδθk where
∞∑
k=1

πk = 1. We can sample θk independently

from a distribution G, but we cannot sample the weights πk independently be-

cause
∞∑
k=1

πk = 1. After we sample π1 from probability distribution H on [0, 1],
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π2 is no longer distributed on [0,1]; it can only take values in [0, 1− π1]. We can
think of Ik = [0, 1 − (π1 + ... + πk)] as the remaining probability mass after the
first k probabilities have been determined.

Instead of sampling the weights πk, we sample independent proportions Vk
from distribution H and then calculate the weights as

πk = Ik · Vk

Since Ik changes from step to step as Ik = (1 − Vk) · Ik−1, we can generate the
sequence as

V1, V2, ... ∼iid H, πk = Vk

k−1∏
i=1

(1− Vi)

Such sampling procedure is called stick-breaking process. We can think of
the interval as a stick from which pieces (1 − Vk) are repeatedly broken off. We

can now generate a random discrete measure Θ =
∞∑
k=1

πkδθk by sampling θk from

G and independent proportions from H on [0, 1]. The random discrete measure
generated using beta distribution as H is a Dirichlet process.

3.3.1 Stick-Breaking Definition of Dirichlet Process

If α > 0 and G is a probability distribution on Ωθ, the random discrete measure

Θ =
∞∑
k=1

πkδθk generated by

V1, V2, ... ∼iid Beta(1, α), πk = Vk

k−1∏
i=1

(1− Vi)

θ1, θ2, ... ∼iid G

is a Dirichlet Process with base distribution G and concentration α, de-
noted by DP(α,G).

If we integrate a parametric density p(x|θ) against a random measure Θ gen-
erated by a Dirichlet process, we obtain a mixture model

p(x) =
∑
k∈N

πkp(x|θk)
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called a Dirichlet process mixture model. Observations X1, X2, ... are gen-
erated from a DP mixture model according to

Θ ∼ DP(α,G)

θ1, θ2, ...|Θ ∼iid Θ

Xi ∼ p(x|θi)
The model represents a population subdivided into an infinite number of clusters.
For a finite sample X1 = x1, ..., Xn = xn, we can observe at most n of these
clusters.

3.4 Random Partition

Assigning each observation in a sample to a unique cluster induces a random
partition of the sample. For example, suppose we record observations X1, ..., X1

and compute a clustering solution that subdivides the data into three clusters
({X1, X2, X4, X7, X10}, {X3, X5}, {X6, X8, X9}). We can encode this solution
as a partition of the index set [10] = {1, ..., 10} : ({1, 2, 4, 7, 10}, {3, 5}, {6, 8, 9}).

To make things more precise, a partition

Π = (B1, B2, ...)

of N is a subdivision of N into a (possibly infinite) number of subsets Bi ∈ N ,
such that each i ∈ N is contained in exactly one set Bk. The sets Bk are called
the blocks of the partition. We used variables Zi to encode cluster assignments
by setting Zi = k if Xi is in cluster k). In terms of partitions, this means

Zi = k ⇔ i ∈ Bk

and a random sequence (Z1, Z2, ...) is hence equivalent to a random partition
(B1, B2, ...).

Given a random discrete probability measure Θ =
∑
πkδθk , we can generate

a random partition Π of N by sampling the variables Zi, Z2... with probabili-
ties P (Zi = k) = πk. Any discrete probability measure Θ hence parametrizes
a distribution PΘ(Π) on random partitions. If Θ is a random discrete probabil-
ity measure with distribution Q, we can define a distribution on partitions by
integrating out Θ

P (Π) =

∫
PΘ(Π)QdΘ

We can sample from this distribution in two steps, as Θ ∼ Q and Π|Θ ∼ PΘ.
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3.5 Chinese Restaurant Process

In a clustering problem, we want to group the observations into clusters. Whereas
the parameter in Bayesian mixture is a discrete random probability measure, the
partition represents the actual subdivision of the sample. We could then argue
that a more appropriate choice for the model parameter would be a partition, in
which case the prior should be a distribution on partitions.

The Chinese restaurant process with concentration α is the distribution
P (Π) on partitions that we obtain if we choose a Dirichlet process with parameters
(α,G) to be Q, the distribution on the random discrete probability measure Θ.

The CRP and DP are closely related. To substitute a random partition prior
(CRP) for a random measure prior (DP), we start from the distribution over
random partitions PΠ, draw a random partition from PΠ, draw a θk ∼ G for each
cluster k in the partition, and finally sample Xi|θk ∼ p(x|θk) each i in cluster k.

Here is how the analogy works. We have a Chinese restaurant with an infinite
number of tables, each of which can seat an infinite number of customers. The
first customer enters the restaurant and sits at the first table. The second cus-
tomer enters and decides either to sit with the first customer or at a new table.
In general, the (n + 1)st customer either joins an already occupied table k with
probability proportional to the number nk of customers already sitting there, or
sits at a new table with probability proportional to α. Identifying customers with
data points 1, 2, . . . and tables as clusters, after n customers have sat down, the
tables define a partition of the data points distributed according to a CRP(α) as
decribed above. The process can be represented by:

For observations indexed by i = 1, 2, ...,

1. put i into an existing block Bk with probability nk

a+n−1

2. create a new block containing only i with probability α
a+n−1

4 Code

4.1 Procedure for Generating Datasets

1. generate a sequence from 1 to n

2. randomly sample n · p entries from the n entries without replacement

3. randomly sample (n−n·p) entries from the n·p entries without replacement

4. concatenent the two samples from step 2 and 3

5. create a table of the data frame
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4.2 Function for Generating Datasets

Function for simulating datasets with parameters n (number of total initial data
points) and p (proportion of data points resampled)

Algorithm 1: Generating Datasets

Input: Number of total initial data points n; Proportion of data points
resampled p

Output: Table of simulated dataset
1 sampAll← sample(n, n ∗ p, replace = FALSE)
2 sampRep← sample(sampAll, n− n ∗ p, replace = FALSE)
3 sampComb← c(sampAll, sampRep)
4 dfComb← data.frame(sample = sampComb)
5 tab.sim← table(dfComb)
6 return tab.sim

4.3 CRP

1. create a vector of table assignments

2. the i-th customer assigned to new table with probability a / (i + a)

3. the i-th customer assigned to existing table with probability n.j / (i + a),
where n.j is the number of customers currently sitting at table j
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Algorithm 2: CRP

Input: Total number of customers N ; Dispersion parameter α
Output: Table assignments for the N customers

1 assign← c(rep(0, N))
2 assign[1]← 1
3 for i← 2 to N do
4 prob.new ← α/(α + i)
5 if runif(1) < prob.new then
6 assign[i]← max(assign) + 1
7 else
8 freqs← c(rep(0, (i− 1)))
9 for j ← 1 to (n− 1) do

10 n.j ← sum(assign == j)
11 freqs[j]← n.j/(i+ a)
12 assign[i]← sample(1 : (i− 1), 1, prob = freqs)
13 return assign
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