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Abstract: Electronic Health Records (EHR) data constitute a relatively
new data source that contain a running tally of a patient’s clinical changes.
As such, they are an appealing resource for clinical analysis, particularly
risk prediction. While these data are potentially powerful, they inherently
have a number of challenges such as many potential predictor variables,
sparse and irregular measurements over time, and data that may be infor-
matively not observed. As as result, developing robust risk models can be
challenging. Using data from our institution’s EHR system, we illustrate
the various considerations necessary for developing a dynamic risk score for
inpatient deterioration. We choose a computationally efficient time varying
Cox model and show how the model can be adapted to incorporate differ-
ent data complexities. We compare our results to an Early Warning Score
currently implemented in the EHR system, showing that fitting a model
with one’s own institution’s data results in better performance, even when
using the same predictor variables.

1. Introduction

Early Warning Scores (EWSs) have become an important component of man-
aging in-patient care. They provide a means to assess changes in a patient’s
clinical status, alerting clinicians to the need for intervention. One commonly
used EWS is the National Early Warning Score (NEWS), which was designed to
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detect risk of patient deterioration (Smith et al., 2013). Recently, our institution
integrated automated calculation and reporting of the NEWS into its Electronic
Health Record (EHR) system. NEWS was designed to be easily hand calculated
and uses only a few predictor variables (see Figure 1). Moreover, as a general
score, it is not optimized for our institution (or any particular) patient popu-
lation. A recent internal evaluation showed that implementation of the NEWS
had no meaningful impact on patient outcomes. This is not surprising, since the
overall performance of the NEWS was quite low with the average Area Under
the Curve (AUC) of 0.64 for the first seven days after admission. A review of
EWSs has suggested that they have mixed performance (Alam et al., 2014).

National Early Warning Score (NEWS)*
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Fig 1: Calculation guide for the NEWS (Smith et al., 2013). Patients are assigned
a set of points based on their clinical values. Typically, a score above 8 indicates
risk of adverse outcomes.

EWSs such as the NEWS were not designed to fully utilize the capabilities of
modern EHR systems. Instead, modern EHR systems are capable of collecting
and analyzing patient data within a real time environment. For example, each
time a blood pressure measurement is taken or a laboratory test is ordered this
information is stored within a running catalog of the EHR system. With these
data it is possible for each institution to develop its own robust risk score and
not rely on simpler off-the-shelf scores. Other authors have illustrated how they
can achieve increased performance by developing more sophisticated risk scores
from single-center data (Henry et al., 2015; Kipnis et al., 2016).

As modern EHR systems have proliferated, there has been a steady rise in the
use of EHR data for the development of risk prediction models (Goldstein et al.,
2017a). While these studies have shown a number of strengths, few (< 8%) of
these studies considered modeling data in a time varying way. Such models are
challenging to develop and implement in real time. As such, our goal in this
paper is to demonstrate how to use EHR data to develop a robust risk model
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for patient deterioration. We use real time EHR data (i.e. vital signs, laboratory
measurements etc.) to develop a time updating risk score for our outcome. Our
intention is that a patient’s score will dynamically change as new information
is incorporated into the health record.

One important question that arises is how one should best analyze EHR data.
The primary analytic challenge is incorporating a longitudinal covariate pattern
with a scalar outcome. In recent years, there has been significant development
in analyzing such data, particularly around joint models for longitudinal and
survival data (Rizopoulos, 2011) and Gaussian Processes to analyze individ-
ual trajectory data (Colopy et al., 2016). However, these approaches can be
computationally expensive and not well suited for some EHR based data sets.
Moreover, it is not clear how much added value they provide over simpler ana-
lytic approaches (Goldstein et al., 2017b; Wehbe et al., 2015). For this reason,
we propose a simple time-varying covariate Cox regression model which takes
in multiple covariates, is easily scalable, and estimates dynamic patient risk.

The rest of the paper proceeds as follows. Section 2 introduces the data mo-
tivating our analyses and the initial cleaning steps. Section 3 describes our ana-
lytic methods, consisting of a time-varying Cox model and multi-state models.
Specifically, we propose four models which increase in complexity, incorporating
more available covariates in each model. We also discuss how we set up the data
in counting process and how we address the challenges of cleaning dynamic data,
specifically how we handle missing values and labs. Section 4 presents the results
of our analysis, including hazard ratios for different variables and comparative
performance assessment. Section 5 discusses future work.

2. The Data

In this section, we describe the data, the outcome of interest, and the available
predictors.

2.1. Awailable Data

The data are drawn from the Duke University Hospital (DUH) EHR system, an
Epic Systems Corporation (EPIC) based health system, installed in late 2013.
The EHR system is capable of capturing both historical (e.g. comorbidities,
service history) and dynamic patient data (e.g. vitals measurements, laboratory
orders). In July 2015, DUH integrated the NEWS and an associated alert system
into the EHR system. While our internal evaluation of the NEWS implementa-
tion suggested little added value, to avoid potential biases due to intervention
(Paxton, Niculescu-Mizil and Saria, 2013), we study patient encounters before
the implementation of the alert system. Specifically, we abstracted data on pa-
tient hospital stays from July 1, 2014 — June 30, 2015. We focus on patients
admitted to general medical wards, i.e. an environment where patients are rela-
tively stable and not receiving constant monitoring as in an intensive care unit
(ICU). Specifically, there were 28,932 individual patient hospitalizations during
this time period.
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2.1.1. Outcome of Interest

Our primary outcome, which we term patient deterioration, is a composite of in-
patient mortality, transfer to the ICU, or call for Rapid Response Team (RRT).
Our clinical collaborators chose this composite because it is believed to capture
most forms of adverse outcomes and allow for the clinical team to make assess-
ments regarding the best course of action (Smith et al., 2013). As we discuss in
Section 3.1.2, we remove events that do not occur on one of the general medical
wards of interest. For example, if a patient dies during a surgical procedure we
do not consider this an event of interest. For analytical purposes, patients were
censored either at the time of discharge or after 30 days of a hospital stay.

2.1.2. Available Predictor Variables

The NEWS only incorporates data on seven vital signs, while a typical EHR is
rich regarding patient information. After consultation with our clinical collab-
orators we abstracted information on 3 demographics variables—age, sex, and
race; 9 comorbidities from the medical history — diabetes, malignancy, chronic
kidney disease (CKD), chronic obstructive pulmonary disease (COPD), myocar-
dial infarction (MI), stroke, HIV, transplant, surgery; and 10 laboratory tests—
white blood cell count (WBC), magnesium (Mg), creatinine kinase (CK), blood
urea nitrogen (BUN), creatine kinase - MB (CKMB), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), bilirubin, ammonia, D-dimer—to in-
corporate into the risk model.

2.2. Data Cleaning

In order to allow the data to be as close as possible to the original raw data, we
employed minimal cleaning. First, we dealt with implausible vital measurements
(0.15% of all vitals) by simply removing this small fraction of values. Second, two
of the seven vitals indicators, consciousness level (Consciousness) and whether
the patient is receiving supplemental oxygen (O2), are categorical variables.
Consciousness can take five levels — alert, lethargic, responsive to pain stimulus,
responsive to verbal stimulus, or unresponsive. For simplicity we combine them
into two levels, alert and non-alert, as is done in the NEWS score. Also, there are
two different variables indicating supplemental oxygen status. One is a binary
variable indicating whether or not supplementary oxygen was given, while the
other lists the type of intervention device such as face mask or nasal cannula. For
simplicity, we assume that patients who have a device type listed did receive
supplementary oxygen, and combine these two variables into a single binary
variable. Third, we deal with the challenge of analyzing laboratory data. Due to
data entry discrepancies, a single lab may have different names in the system.
For example, “WBC” and “White Blood Cell Count” refer to the same lab. We
identify all the common names that a lab may be be entered as in the system and
extract them from the data. We also remove all implausible lab values (< 1%)
from the data set.
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3. Data Preparation & Analytic Approach

One of the primary challenges of working with EHR data is converting the data
into an analytic format that allow for modeling of the data. Since the analytic
format dictates how the data need to be organized, we describe the analytic
approach followed by the data processing steps. We then describe the specific
models we fit and how we evaluated them (see Sections 3.2, 3.3, and 3.4).

3.1. Data Set-up

We discuss the conversion of our data into a format that one can model and
then we discuss how we deal with missing values.

8.1.1. Conwersion to an Analytic Format

As already mentioned, one challenge of working with EHR data is that they are
not naturally collected in a format or data structure that is easy to analyze. This
simple stream allows for the transfer of any piece of health information, in what
are referred to as HL7 messages (Dolin et al., 2006). HL7 is an international
standard for translating health information. Figure 2 shows a sample of how
the raw data are extracted. Each row corresponds to a new measurement of one
vital variable, recorded in irregular intervals, one measurement at a time.
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“001"I"RESPIRATIONS"I"Resp"|"9"18/21/2014 10:00:001"186"
“001”I"PULSE"I"Pulse"l"8"18/21/2014 11:00:001"80"
“001”I"PULSE OXIMETRY"|"SpO2"["10"18/21/2014 11:00:00I"96"
“001"I"RESPIRATIONS"I"Resp"|"9"18/21/2014 11:00:001"13"
“002"I"TEMPERATURE"|"Temp"l"6"18/12/2014 3:38:001"97.5"
“002"I"RESPIRATIONS"["Resp"l"9"18/12/2014 3:38:001"18"
“002"I"PULSE OXIMETRY"I"SpO2"["10"18/12/2014 3:38:001"96"
“002"I"BLOOD PRESSURE"I"BP"I"5"I8/12/2014 3:38:001"93/52"
“002"I"PULSE"I"Pulse""8"18/12/2014 3:38:001"58"
“002"I"RESPIRATIONS"["Resp"l"9"18/12/2014 7:07:001"18"
“002"I"TEMPERATURE"|"Temp"l"6"18/12/2014 7:07:001"97.6"
“002"I"PULSE"I"Pulse""8"18/12/2014 7:07:001"52"

“002"I"PULSE OXIMETRY"I"SpO2"I"10"18/12/2014 7:07:001"97"
“002""BLOOD PRESSURE"I"BP"I"5"18/12/2014 7:07:00I"103/65"
“002"I"TEMPERATURE"|"Temp"l"6"8/13/2014 3:30:001"98.2"
“002"I"PULSE"I"Pulse""8"18/13/2014 3:30:001"76"
“002"I"RESPIRATIONS"["Resp"l"9"18/13/2014 3:30:001"18"
“002"I"BLOOD PRESSURE"|"BP"|"5"18/13/2014 3:30:001"110/51"
“002"I"PULSE OXIMETRY"I"SpO2"I"10"18/13/2014 3:30:001"98"
“002"I"TEMPERATURE"|"Temp"l"6"8/13/2014 7:37:001"98.1"
“002"I"PULSE"I"Pulse""8"18/13/2014 7:37:001"61"
“002"I"RESPIRATIONS""Resp"l"9"18/13/2014 7:37:001"18"
“002""BLOOD PRESSURE"I"BP"I"5"18/13/2014 7:37:00I"109/50"

Fig 2: Raw vitals data as extracted from the EHR in HL7 format. The first
column provides a patient ID. Columns 2 - 4 indicate the measurement being
captured (long description, short description, code). Column 5 is a time stamp.
The last column is a value. This format allows for the capture and transfer of
all health information.

In order to relate the time varying covariates with our outcomes, we move the
current data structure to a “counting process,” which involves creating a wider
data set containing each of the unique predictor variables. Each time a new
piece of clinical information is recorded, a new line is created for the patient,
updating the new piece of information (e.g. blood pressure) and keeping the
others the same. Note that not all clinical covariates are updated at the same
time. Crucial to creating the counting process is the creation of non-overlapping
start and stop time periods. As is typical in time varying survival analysis, we
assume that the time intervals are closed at the start time and open at the
stop time (with the section of the event at the end of the final stop time being
closed). This discretization of times ensures that there is not repetition of a
person. Figure 3 shows an example of the data after this transformation. More
specifically, we have transformed all the covariates for person i at time j into a
data matrix, and each time a covariate value changes we update this matrix.
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PAT_ENC_CSN_ID StartTime StopTime timeOfEvent event Pulse’ Resp  SpO2° Temp ~ SYS  Consciousness O2
001 0 0.31 0 70 16 100 37.000.. 120 Alert

001 0.31 0.33
001 0.33 0.37
001 0.37 0.53

1

2 91 14 97 37.000.. 126 Alert
3

4

5 001 0.53 0.56

6

7

8

9

88 16 96 36.611.. 149 Alert
88 16 96 36.611.. 149 Alert
87 20 97 36.500.. 132 notAlert
001 0.56 0.58
001 0.58 0.68
001 0.68 0.73
001 0.73 0.77
10 001 0.77 0.79 0.79
11 002 0 0.02
12 002 0.02 0.02
13 002 0.02 0.03
14 002 0.03 0.04
15 002 0.04 0.04

87 20 97 36.500... 132 notAlert
87 18 97 36.500.. 132 notAlert
97 36.388.. 110 notAlert
82 20 96 36.388.. 110 notAlert
82 16 96 36.388.. 110 notAlert
70 16 100 37.000.. 120 Alert
86 16 91 37.000.. 135 Alert
82 16 95 37.000.. 134 Alert
92 16 89 37.000.. 134 Alert

©c o oocoroooooo oo
o
i
S

©c oo oormkrroooooo

86 16 95 37.000.. 126 Alert

Fig 3: Sample Data in transported in Counting Process format. Each time data
are updated within the EHR system, a patient gets an additional row of data.

While we chose to create a new record each time a measurement was taken,
we also considered binning data into regular time intervals, taking the mean
value if more than one measurement was recorded, ultimately smoothing the
data. We used cross validation to assess the following optimal bin size: 4-hour,
8-hour, or no binning. Our results suggested that there was no effect on the bin
size with no-binning being nominally best.

3.1.2. Unobserved Values

In the data preparation process, we identified two types of missing values. The
primary type occurs after a patient is first admitted into the hospital but before
any measurements are taken. The secondary type occurs after the first measure-
ment. For the vitals variables, 96% of the patients received a first measurement
within the first 4 hours after admission to hospital. After measurements were
taken regularly, the median time to next measurement was 1.9 hours. We use dif-
ferent imputation approaches to handle the aforementioned types types of miss-
ing data. Because vitals measurements during the first time bin in the counting
process—from a patient’s time of admission to time of the first observation—
are unobserved, we impute these with values considered to be the most normal
from the NEWS table, having observed that the median values of our vitals data
are very similar to the median values of the normal range from the NEWS ta-
ble. When a measurement is not updated, we use the Last Observation Carried
Forward (LOCF) imputation approach, where missing values are replaced by
the previous complete vital reading, and we assume vitals measurements then
remain unchanged until there is a new reading.

On the other hand, laboratory tests are handled differently. First, some lab-
oratory test are routine and typically ordered for all patients, while other tests
(CK, CKMB, Bilirubin, Ammonia, D-dimer) are quite informative, i.e. a doc-
tor only orders these tests if s/he suspects something is wrong. Therefore we
did not want to impute in unobserved laboratory results. Second, there are two
time stamps associated with a laboratory test, when the lab is ordered and when
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the results are available. For this reason we considered coding the laboratory
results in two ways. For those where the ordering is informative we created a
counting variable for each time a laboratory test is ordered. The variable starts
with the value 0 and increments by one whenever a new test is ordered. Then
for all the labs we created a four level categorical variable of: No Value, Nor-
mal, High, Low. Our clinical collaborators specified clinical cut-offs for normal
ranges. While there is potentially some loss of information in discretizing the
laboratory results, this allows us to naturally handle time-varying capture of
the labs without having to impute missing data.

3.2. Time-Varying Cox Model

To develop our risk model, we used a time-varying covariate Cox model (Cox,
1972).

The Cox proportional hazards model is a semi-parametric regression model
with time varying covariates that allows the measurement of time to events.
It is composed of a non-parametric hazard function and parametric vector of
covariates. The hazard for individual i is

At) = Ao(£)em P, (1)

where x is a vector of the covariates, 3 is a vector of coefficients for the covariates,
and Ag(t) is the baseline hazard, a non-negative function of time. Note that the
covariates x are time varying throughout the remainder of the paper.

With the Cox model being well studied (see Therneau and Grambsch (2000)),
there are many advantages of this model. For one such as the use of time-varying
covariates allows for the easy integration of time-updated features. Moreover,
the parametric component allows for flexible specification of the relationship
between the covariates and the outcome. This can include non-linear effects,
interactions, and dynamic (i.e. change over time) effects. The later, which we
explicitly study allows one to approximate the more complex joint models. While
the inclusion of such effects can result in an over parameterized model, Cox
models are well suited for regularized methods (Simon et al., 2011). In addition,
the Cox model is very computationally efficient for generating risk predictions,
an important consideration from the clinical perspective given the goal is to
implement this model in a real-time environment.

3.2.1. Multi-state Models

As motivated by our use case described in Section 2, we were only interested
in patients when they were on a general medical floor. To capture this informa-
tion, we extracted data on where in the hospital a patient was during her /his
admission. When a patient left a unit of interest, (e.g. taken into surgery) we
considered that s/he left the risk set. To account for this, we applied a multi-
state model approach, which allows for a patient’s location to consist of different
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states, with transitions between the states (Putter, Fiocco and Geskus, 2007).
We note, that multi-state models typically employ a Markov assumption.!

Putter et al. (2006) used this approach for developing a risk score for breast
cancer patients. Analytically, this consists of estimating transition probabilities,
as cause specific hazards, from one state to another. Our outcomes were similarly
defined as ‘states’ with death being an absorbing state. This allowed us to define
transitions of interest in assessing outcomes. For example, if a patient transitions
from a surgery to the ICU, we would not consider this an event, while if a patient
transitions from the floor to the ICU, this would be an event. We do this because
the risk score is meant to operate on the general medical floor. A separate score
could be considered for risk of death during a surgery. Another advantage of this
approach is it allows us to consider discharge as a competing event as opposed to
an independent censoring event. In the multi-state framework competing events
are naturally handled via the cause specific hazard interpretation. We note that
this makes any inference into risk factors challenging, though this is not our
primary objective.

While Putter et al. (2006) established a framework for performing risk pre-
diction from and to multiple states, in this paper, we are interested in transi-
tion from one specific state (medical ward) to one specific state (the composite
of death, ICU transfer and RRT). Our task is simplified by considering only
one particular transition. In principle, we did not have to create a composite
endpoint and could have considered transition probabilities to each of these
outcomes separately, however, this would have decreased our power to estimate
effects and more importantly, clinically, is less important.

3.3. Analytic Approach

We now describe our analytic approach, namely providing model comparisons
and model estimation in Sections 3.3.1 and 3.3.2.

3.8.1. Models Compared

Our interest was assessing the added value of both recalibrating the NEWS
to our patient population and incorporating additional predictor variables. We
considered four sets of predictor variables, namely:

1. the seven NEWS variables recalibrated to our patient population;
2. adding in additional demographics and comorbidities;

3. adding in laboratory tests;

4. adding in changes in vitals.

IThat is, conditional on one’s current state, the corresponding transition probability does
not depend on one’s previous state. We relax this assumption in the case of having a surgical
procedure during the encounter. Specifically, we add a time varying indicator for whether a
patient has had a surgery during the hospitalization.
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These predictor sets represent increasing complexity of data to pull from the
EHR system and then incorporate into a risk model. For (iv), we calculated
the slope of the change for each continuous vital over the previous 4 hours. In
addition, the standard NEWS was calculated as a benchmark.

3.3.2. Model Estimation

In order to perform model estimation, we randomly sampled 80% patients and
included them in the training set, with the other 20% in the test set. We fit each
of the four proposed models models and NEWS on the training data.

Using the training data we considered different ways of setting up the data.
First, we assessed time-binning the data (see Section 3.1). Second, the NEWS
table suggests there are U-shape relationships between four of the vitals (heart
rate, blood pressure, temperature and respiration) and risk, with both low and
high values conferring added risk. To account for this potential U-shape rela-
tionships, we include quadratic terms for those four vitals. Third, for model (4)
we calculated changes over the previous 4, 8, 12 and 24 hours. Finally, we con-
sidered Ly regularization for the largest model (Simon et al., 2011). For each of
these we used 10-fold cross-validation on the training data assessing fit via the
predictive partial log-likelihood (Verweij and Van Houwelingen, 1993). Results
suggested that the optimal fit had no binning, incorporated quadratic terms, and
used a 4 hour change value for vitals. Additionally, there was minimal added
value to regularization, likely due to the relatively small ratio of predictors to
observations.

3.4. FEwvaluation

To evaluate the models, we assessed each model’s discrimination, or rather, the
ability of a model to separate those who had an event and those who did not have
an event via concordance (c)-statistics. There have been a number of proposals
for how to calculate c-statistics for survival models with time varying predic-
tors (Kamarudin, Cox and Kolamunnage-Dona, 2017). We use the approach
of Heagerty and Zheng (2005), who propose the idea of an incident/dynamic
sensitivity and specificity, which are defined as follows:

sensitivity” (c,t) : P(M; > ¢|T; = t) (2)
specificity” (¢, t) : P(M; < ¢|T; > t). (3)

The “incident” sensitivity, equation 2, measures the expected fraction of sub-
jects with a risk score, M;, greater than ¢ among the subpopulation of individuals
who die at time ¢. On the other hand, the “dynamic” specificity, equation 3,
measures the fraction of subjects with a risk score less than or equal to ¢ among
those who survive beyond time ¢. Since the sensitivity is calculated at the time
of the event this method is well suited to time-varying risk scores. The global
c-statistic is

P(M; > My|T; < Ty)
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and c-statistics can be thought of as a weighted average under time specific
ROC curves (Heagerty and Zheng, 2005).

To evaluate our risk models, we first calculate the c-statistic over time for
each of the proposed variable sets as well as the NEWS. After identifying the
best global risk model, we evaluated the model over different time horizons of 6,
12, 24, & 48 hours in order to assess what is the optimal time frame for which
the model performs.?

A further advantage of our Cox model is the ability to generate individual
risk predictions for patient risk relative to all other patients in the model. In
order to do this, we compute the hazard ratio relative to the sample average for
all of our predictor variables. Recall that the hazard for individual ¢ is given by:

)\z(t) = )\o(t)exi(t)’g.

Thus, the hazard ratio between two individuals ¢ and j with predictor variables
x; and x; is independent of both the baseline hazard and time ¢. Therefore, the
relative risk between two patients is given by:

eri(t)B
eri(t)B” (4)

If we set z;(t) to the average values in the sample, then equation 4 repre-
sents the risk for person i relative to the average person, with a value above
1 indicating increased risk and a value below 1 decreased risk. To assess our
model on the individual level, we chose 3 patients that ultimately had an event
and plotted their relative risk score over time. We compared these plots to the
relative risk score calculated by the NEWS. We also assessed globally how risk
assessment varies between those that do and do not experience events.

4. Analysis

We provide an analysis of the proposed methodology. First, we give a more in
depth description of the EHR data in Section 4.1. Next, we fit the four proposed
models on the training data and calculate incident AUC predictions on the test
data, making comparisons to the benchmark, the NEWS in Section 4.2. A full
discussion of model performance is given in this section. In addition, we provide
individual risk assessment in Section 4.3.

4.1. Data Description

Overall 5.4% of people had an event. The event rate was greatest during the
first couple of days and by 30 days 98% of patients have either had an event or
been discharged.

Supplemental tables 1-3 provide summaries of the extracted variables. Most
patients had their first vitals measurement within four hours after admission

2We used the R package risksetROC (Heagerty and Saha-Chaudhuri, 2012).
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(Supp Table 1). Vitals were updated frequently but at irregular intervals rang-
ing from several minutes to several hours, with a median interval of 1.9 hours.
Note that there are meaningful differences in vital values and rates of different
comorbidities (Supp Table 2) between those patients that did and did not expe-
rience events will and will not have events. Finally, with regards to laboratory
test (Supp Table 3), we observed high variability between the frequency of which
different labs are ordered, with some labs being ordered multiple times.

4.2. Owverall Prediction Models

We fit each of the four proposed models models on the training data and calcu-
lated incident AUC of predictions on test data assessed over 30 days. We also
calculated the NEWS on the test data. Figure 4 shows that the EHR based
models significantly outperform the NEWS. Refitting the NEWS variables with
our data improved the overall c-statistic from around 0.64 to 0.83. The inclu-
sion of additional EHR covariates, slightly improves the overall fit with the labs
based score having the best nominal c-statistic (0.84). However, there are not
strong qualitative differences between the four models considered.

Model performance also varies over time. There is relatively strong perfor-
mance at the time of admission though this quickly declines. As hospital stay
increases, model performance improves. It is important to note that most events
happen earlier in time when model performance is relatively weaker. One belief
for the improved performance over time is that, as patients are stabilized, any
deviation from “normal” values is more indicative of poorer health prognosis.

We also evaluate how well our model can predict future events based on
current data. We look at 6-hour, 12-hour, 24-hour and 48-hour prediction per-
formance for the model with vitals, demographics and comorbities and labs.
Figure 5 shows that the model performs better in the near term.

Finally, we examine which covariates are most predictive of clinical risk. Fig-
ure 6 shows the coefficients for covariates. All covariates are standardized to
have standard deviation of 1 so that the coefficients of our models are com-
parable. Not surprisingly, the strongest predictors are all the vital signs. This
suggests that the NEWS likely identified many of the correct predictors and
they are simply not optimized for our patient population. The other variables
sets contribute less to the overall risk score, explaining why there is minimal
improvement between the four models.
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Fig 4: AUC for the 5 models assessed over time. The EHR based score performs
meaningfully better than the NEWS. There is minimal difference between the
4 EHR variable sets.
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Prediction Performance Across Time Horizons
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Fig 5: AUC for prediction at different time horizons under the model “Vi-
tals+Demos+Labs.” The risk model performs best in the near term (6 hrs).
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Fig 6: Cox regression coefficients estimated on the full model. All variables have
been standardized to be comparable. Each column represents one of the four
variable sets. Colors are on an intensity scale ranging from blue (protective
factors) to white (no association) to red (risk factors). The NEWS variables
have the strongest (most extreme) associations with the other variables being

less impactful.
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4.8. Individual Risk Assessment

In order to examine how the risk for individual patients varies between NEWS
and our best performing score, we calculate the individual risk for each patient
over their hospital stay as described in Section 3.4. In Figure 7, we illustrate the
time varying relative risk for three individuals that ultimately had events. This
allows us to examine how patient risk varies between models, and examine the
underlying changes in patient features over time that drive the corresponding
change in risk. In general, we find that for patients with events, the Cox model
gives much higher relative risk scores, leading in turn to a higher predictive
accuracy at all points during a patients hospital stay.

Patient 1 Patient 2 Patient 3

Models
Cox

—— NEWS

Relative Patient Risk

A R g S .
Fig 7: Relative patient risk for three individuals with events over their hospital
stay for NEWS and the Cox model with Vitals+Demos+Labs. At each time
point that patient’s features are updated, a new individual risk score is calcu-
lated. These scores are plotted for each of the three patients allowing us to see
an individual patient’s risk changes throughout their entire stay.

Upon examining three individual patients we note different reasons for the
superior performance of the Cox based risk score over the NEWS.

Patient 1: Both risk scores predict similar risk patterns. However, the
Cox based scores has an amplified relative risk owing to the larger magni-
tude on the coefficients. We note that at hour six, there is a large decrease
in oxygen saturations from 95% to 89% while all other factors remain the
same.

Patient 2: During the observation period, this patient experiences fluc-
tuations in heart rate, respiration rate, and systolic BP. However, these
fluctuations remain within the normal intervals of the NEWS, giving a
score of zero throughout the patient’s entire stay. On the other hand, the
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Cox model observes these changes as increases in risk relative compared
with other patients in the observed data set.

Patient 3: This patient also has slightly elevated levels of risk in the Cox
model. In particular, at the 20 hour mark, we note that the risk score
for NEWS begins to decrease towards one. There are two key factors
driving the difference between the Cox and NEWS models here. While
this represents a period of relative stability, there is still a spike in systolic
BP and smaller changes in heart rate. In addition, within this period a
WBC lab is returned elevating the patients count from normal to high
which is not taken into account by NEWS.

To further understand the differences in the NEWS and Cox based scores we
stratified all people based on whether they had an event or were discharged alive.
Then we calculated their risk score in the 24 hours prior to event/discharge.
Figure 8 shows the time varying risk based on the Cox model and the NEWS.
Overall, the Cox model estimates a meaningfully higher relative risk for those
that have an event. Moreover, leading up to the event, the risk estimate begins to
rise. This happens primarily in the 6 hours before the event, illustrating why the
risk score has it’s best performance at this horizon (see Figure 5). Conversely,
the NEWS shows no such change prior to the event and there is no meaningful
risk assessment difference between those with and without events, with people
having events having a nominally lower risk score.
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Risk Score Prior to Event/Discharge

© o — Event

- - Discharged
—— Cox Risk Score
— NEWS

Relative Risk
3
!
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Fig 8: Relative risk in the 24 hours prior to deterioration event (solid lines) or
discharge (dashed lines), where the dashed black line indicates reference risk of
‘1’. The Cox based score (solid and dashed teal lines) shows meaningfully differ-
ent risk assessments between those experiencing and not experiencing events. In
addition, the risk increases as one nears event. Conversely, the NEWS (solid and
dashed purple lines) does not show any discrimination nor change with response
that corresponds to the risk.
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5. Discussion

EHR data are becoming more ubiquitous in clinical research, particularly risk
assessment. However developing risk models with EHR data can be challenging
since EHR data contain a number of challenges. These challenges include large
sample sizes, dense and irregular longitudinal measurements, and complex data
types with potentially missing values. In this paper we lay out many of these
challenges and illustrate how one can apply a time-varying Cox model to flexibly
derive a risk score.

By embedding our risk score within a Cox model we obtain increased flexibil-
ity over more complicated analytic approaches. We easily handle multiple longi-
tudinal predictors, something that while theoretically possible with joint models
and Gaussian Processes, is not computationally efficient (Banerjee, Dunson and
Tokdar, 2011; Riedel and McCallum, 2011). Moreover, since a Cox model is well
suited for regularization (Simon et al., 2011) it can also handle many predictors.
This becomes useful because one can approximate the additional flexibility of
joint models and Gaussian Processes by incorporating additional “slopes” or
“changes” for the longitudinal predictors. While our results suggests that these
variables did not improve risk assessment that flexibility is appealing.

The ability to flexibly code predictors is especially important with EHR, data
and becomes a means to handle missingness. Modeling predictors such as labo-
ratory values, which are not collected on everyone is challenging. Since the lack
of collection is likely informative — doctors only order a lab test if they think
there is something wrong — imputation is not desirable. Therefore coding a lab
test as “not ordered”, “normal”, “high” and “low” allows one to flexibly capture
the clinical reality. It also allows one to capture the time delay between when
a test is ordered and when the results arrive, an important consideration when
one wants to implement a risk score in a real-time environment.

A final flexibility that a Cox model engenders, is the ability to allow people to
leave and re-enter the risk set. In our use case we were only interested in patients
that were at risk of deteriorating while on a general medical ward. Therefore,
we have accounted for the time that a patient was in another location, e.g. a
surgery, and therefore not part of the risk set. By taking a multistate modeling
approach and defining the transitions of interest, this complexity was easily
handled. In addition, our framework can account for any transition of interest.

Our work touches on some of the options for evaluating these types of risk
models, both on aggregate and individual levels. On an aggregate level, one can
consider risk performance both over-time and over different time horizons. Our
model shows improved performance as a hospital stay progresses. This is likely
because patients are stabilized after a couple of days so deterioration becomes
more anomalous and therefore more predictable. Unfortunately, from a clinical
perspective, most events happen earlier in the stay. Our evaluation also shows
that prediction is best in the near term. While not surprising, this is also impor-
tant clinically, as our clinical collaborators suggested they would ideally want 12
hours notice to effectively intervene on a patient. We have also illustrated how
this model can be evaluated on an individual level. Our individual level analysis
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showed that patients derive risk for different reasons. Therefore, it is important
to have a model that can properly capture these changes. This is the primary
limitation of a simpler model like the NEWS. While the general risk categories
simplifies calculation, subtle changes are missed.

Finally, our results highlight the potential for using one’s own data to develop
a risk model as opposed to relying on off-the-shelf scores such as the NEWS.
Even using the same variable set, we are able to derive meaningfully improved
risk performance with a c-statistic of 0.83 vs 0.64. Interestingly, while we do
find increased performance by adding in additional predictors such as demo-
graphics, comorbidities, and laboratory values, clearly the strongest predictors
are those incorporated in the original NEWS. Therefore, even though others
have found that additional risk factors are useful for assessing patient deteri-
oration (Churpek, Adhikari and Edelson, 2016; Jo et al., 2016), this suggests
that while the original authors likely identified the correct risk factors, the coef-
ficients needed to be recalibrated for our environment. It is for this reason, that
while we intend to implement this risk model in our clinical environment, we
do not believe others should should do the same. Instead, the most transferable
component of this work is not the model coefficients but the approach taken.
Ideally, others would take a similar analytic approach and discover the optimal
model for their clinical environment.
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Appendix A

Below we present additional description of the available data

23

Average number

Median (IQR)/Frequency

Median (IQR)/Frequency

Vitals of observations N A N A
per patient Patients with event Patients without event
Heart Rate 35 90 (77, 106) 82 (70, 94)
Respiration Rate 32 20 (18, 22) 18 (16, 20)
Oxygen Saturations 27 96 (94, 98) 97 (95, 98)
Systolic BP 33 122 (108, 140) 124 (111, 140)
Temperature 25 36.8 (36.6, 37.0) 36.8 (36.6, 37.0)
O2 (receiving 45 70.0% 51.6%
supplemental oxygen)
Consciousness (not alert) 13 39.1% 24.0%

Table 1: Vitals signs that are part of the primary NEWS. Patients had many
readings during the exposure period reflecting the need for a time updating
score. There are also meaningful differences between those that did and did not
experience events for many of the vitals.

Percentage among

Percentage among

Demographics patients with event | patients without event
Diabetes 36.4% 28.8%
Malignancy 35.2% 30.6%
CKD 28.0% 18.7%
COPD 18.3% 10.7%
MI 16.1% 9.0%
Stroke 9.5% 5.2%
HIV 1.3% 1.2%
Post-op 8.4% 7.2%
Transplant 10.2% 6.6%
Surgery 16.4% 25.7%
Sex = Female 45.0% 48.0%
Race = Black 31.0% 28.1%
Age (Average) 62 60

Table 2: Demographics variables. Those that ultimately experience events have
much higher comorbidity rates.
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Lab | e o™ | Median orders per patient | g fReE B8 1O time (hours)
WBC 93% 4 5.1
BUN 87% 4 5.2
Bilirubin 65% 2 4.7
Mg 62% 3 5.3
ALT 54% 1 4.5
AST 54% 1 4.5
CKMB 23% 2 3.1
CK 22% 1 3.0
Ammonia 5% 1 2.9
D-dimer 1% 1 8.8

Table 3: Lab Orders, Order Frequency and Wait Time. Some labs are ordered for
all patients (i.e. White Blood Cell Count) while others are infrequently ordered
(i.e. D-dime). Also there is a meaningful lag between when a lab is ordered and
when the results are available.

Percentage Experiencing Event
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Fig 9: Cumulative incidence over first 30 days of hospitalization. Event rate
is greatest over the first couple days of a hospitalizations. By 30 days 98% of
patients have either had an event or been discharged.
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Appendix B

In Section 4.3, we present the results for three patients with events. To further
illustrate the the application of individual patient risk calculations and provide
comparisons between the NEWS and Cox models, we calculate relative risk for
a further subset of patients in our data. In Figures 10, 11, 12, and 13 we show
the time varying relative risk for 200 randomly sampled patients both with and
without events.
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Fig 10: Relative patient risk for 50 randomly sampled individuals with events
over their hospital stay for NEWS and the Cox model with Vitals+Demos+Labs.
At each time point that patient’s features are updated, a new individual risk
score is calculated. These scores are plotted for each of the 50 patients allowing
us to see an individual patient’s risk changes throughout their entire stay.
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Fig 11: Relative patient risk for 50 randomly sampled individuals with events
over their hospital stay for NEWS and the Cox model with Vitals+Demos+Labs.
At each time point that patient’s features are updated, a new individual risk
score is calculated. These scores are plotted for each of the 50 patients allowing
us to see an individual patient’s risk changes throughout their entire stay.
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Fig 12: Relative patient risk for 50 randomly sampled individuals with events
over their hospital stay for NEWS and the Cox model with Vitals+Demos+Labs.
At each time point that patient’s features are updated, a new individual risk
score is calculated. These scores are plotted for each of the 50 patients allowing
us to see an individual patient’s risk changes throughout their entire stay.
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Fig 13: Relative patient risk for 50 randomly sampled individuals with events
over their hospital stay for NEWS and the Cox model with Vitals+Demos+Labs.
At each time point that patient’s features are updated, a new individual risk
score is calculated. These scores are plotted for each of the 50 patients allowing
us to see an individual patient’s risk changes throughout their entire stay.
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